Part Number Hot Search : 
00600 G1000 74LVX244 TM1623 CY7C13 00600 2SA1774 00M35V5
Product Description
Full Text Search
 

To Download TK14551V14551 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  january 2000 toko, inc. page 1 tk14551v features if input frequency ~90 mhz (typ) balanced input (if) includes dual high speed rssi outputs. one is for ask demodulation, another one is for carrier sensing. rssi outputs are accurate with stable temperature characteristic and include buffer amplifiers. high speed rssi comparator for carrier sensing high speed data comparator (~2 mbps) wide band demodulator (~1 mhz) battery save function low voltage operation: 3.0 ~ 5.5 v very small package (tssop-24) block diagram tk14551 applications wide band fsk demodulation wide band fm demodulation video signal demodulation wide band ask demodulation ordering information tape/reel code tl: tape left tape/reel code tk14551v if input (-) if input (+) if gnd battery save rssi comp bias rssi output-1 rssi output-2 if decouple if decouple if output fm demodulator input if v cc gnd v cc 13 14 15 16 17 18 19 20 21 22 23 fm demodulator amp input fm demodulator amp output rssi buffered output-2 data comp input (-) data comp input (+) rssi buffered output-1 rssi comp output rssi comp gnd data comp gnd data comp output fm if detector/amplifier description the tk14551v is a wide band if ic capable of operating up to 90 mhz. it includes an fm demodulator, rssi, rssi comparator and data comparator. these functions can perform high-speed operations. the tk14551v has a unique function that allows establishing the demodulation characteristics by changing the external rc time constant, and not changing the phase shifter constant. the rssi output is individually trimmed, resulting in excellent accuracy, good linearity, and stable temperature characteristics. because the tk14551v includes a dual high-speed rssi output, it is possible to demodulate am simply and to sense the carrier level at the same time. therefore, the tk14551v is suitable for high-speed data communication and can be used for various applications. the tk14551v is available in the very small tssop-24 surface mount package. if amp bias rssi demodulator v cc v cc buff2 data comparator rssi comparator if input (-) if input (+) if gnd battery save rssi comp bias rssi output-1 rssi output-2 rssi buffered output-1 rssi comp output rssi comp gnd data comp gnd data comp output if decouple if decouple if output fm demodulator input if v cc gnd v cc fm demodulator amp input fm demodulator amp output rssi buffered output-2 data comp input (-) data comp input (+)
page 2 january 2000 toko, inc. tk14551v l o b m y sr e t e m a r a ps n o i t i d n o c t s e t t n e m e r u s a e m ) 2 e t o n ( t n i o p n i mp y tx a ms t i n u i c c t n e r r u c y l p p u s , f f o = e v a s y r e t t a b g n i d u l c n i t o n t u p t u o r o t a r a p m o c . t n e r r u c 1 a60 15 1a m , n o = e v a s y r e t t a b g n i d u l c n i t o n t u p t u o r o t a r a p m o c . t n e r r u c 1 a1 . 00 . 5a v n o s n o e v a s y r e t t a b r o f 1 2 n i p t a e g a t l o v e d o m y b d n a t s 1 . 0 -2 . 0v c d v f f o s f f o e v a s y r e t t a b r o f 1 2 n i p t a e g a t l o v e d o m n o i t a r e p o 0 . 2v c c v c d n o i t a l u d o m e d m f f ( n i ) z h m 7 . 0 1 = t i m i ly t i v i t i s n e s g n i t i m i l z h k 1 , t n i o p b d 3 - v e d z h k 0 0 1 a v5 6 -9 5 -m b d v ) t e d ( t u o t u p t u o n o i t a l u d o m e d e g a t l o v , v e d z h k 0 0 1 z h k 1 t u p n i m b d 0 2 - a v0 60 0 10 6 1s m r v m d h tn o i t r o t s i da v5 . 00 . 2% n / so i t a r e s i o n o t l a n g i sa v5 55 6b d f 1 b d g n i t a l u d o m e d d n a b y c n e u q e r f r o t i c a p a c e v o m e r d n a 8 n i p n e e w t e b . 9 n i p d e r u s a e m d r a d n a t s z h k 1 t a e u l a v a v15 . 1z h m absolute maximum ratings storage temperature range ................... -55 to +150 c operating temperature range ...................-40 to +85 c operating frequency range ............ 0.1 to 90 mhz (typ.) tk14551v electrical characteristics test conditions: v cc = 3 v, t a = 25 c, unless otherwise specified. note 1: power dissipation is 230 mw in free air. derate at 1.84 mw/ c for operation above 25 c. note 2: refer to test circuit. supply voltage ........................................................... 6 v operating voltage range .............................. 3.0 to 5.5 v power dissipation (note 1) ................................ 230 mw
january 2000 toko, inc. page 3 tk14551v tk14551v electrical characteristics test conditions: v cc = 3 v, t a = 25 c, unless otherwise specified. l o b m y sr e t e m a r a ps n o i t i d n o c t s e t t n e m e r u s a e m ) 2 e t o n ( t n i o p n i mp y tx a ms t i n u t u p t u o i s s r f ( n i ) z h m 0 4 = v i s s r e g a t l o v t u p t u o i s s r c d , t u p n i o n t n e m e r u s a e m c v0 0 . 00 1 . 00 3 . 0v c d - n o n m b d 0 6 - , t u p n i d e t a l u d o m t n e m e r u s a e m c d c v0 3 . 05 4 . 00 6 . 0v c d - n o n m b d 0 3 - , t u p n i d e t a l u d o m t n e m e r u s a e m c d c v0 7 . 05 9 . 00 2 . 1v c d - n o n m b d 0 , t u p n i d e t a l u d o m t n e m e r u s a e m c d c v5 0 . 15 3 . 15 6 . 1v c d v m a o g n i t a l u d o m e d m a e g a t l o v t u p t u o e n i s ( z h m 2 = m f , ) e v a w , % 0 8 = n o i t a l u d o m t u p n i m b d 0 4 - b v0 4 10 3 20 6 3v m p - p v m a d g n i t a l u d o m e d m a e g a t l o v t u p t u o n o i t c e l f e d , t u p n i m b d 5 1 - ~ 0 6 - e n i s ( z h m 2 = m f , ) e v a w % 0 8 = n o i t a l u d o m b v5 . 1 ? ? d f 2 b d g n i t a l u d o m e d d n a b y c n e u q e r f , t n i o p b d 6 - , % 0 8 = n o i t a l u d o m d e r u s a e m d r a d n a t s . z h k 0 0 1 t a e u l a v b v23 z h m r o t a r a p m o c i s s r t 1 r e m i t e s i r , t u p n i o n f i t u p n i 9 1 n i p v 1 = c d 0 2 n i p , , z h k 0 0 1 = t u p n i v 1 . 0 p - p e r a u q s , e v a w , % 0 5 = o i t a r y t u d ( t r t , f , ) s n 0 1 < v 1 = t e s f f o c d c d d v5 20 5s n t 1 f e m i t l l a fd v5 10 3s n t 1 d p y a l e d n o i t a g a p o r p ) h g i h o t w o l ( e m i t d v5 50 1 1s n t 2 d p y a l e d n o i t a g a p o r p ) w o l o t h g i h ( e m i t d v5 50 1 1s n d 1 r o i t a r y t u dd v5 40 55 5% i 1 k n i s t n e r r u c k n i s t u p t u o , t n e m e r u s a e m c d n o i t a r u t a s t u p t u o v 3 . 0 = e g a t l o v 2 a5 . 30 . 5a m v 1 h t u o h g i h e g a t l o v t u p t u o l e v e l t n e m e r u s a e m c dd v0 7 . 25 9 . 20 0 . 3v c d
page 4 january 2000 toko, inc. tk14551v tk14551v electrical characteristics test conditions: v cc = 3 v, t a = 25 c, unless otherwise specified. l o b m y sr e t e m a r a ps n o i t i d n o c t s e t t n e m e r u s a e m ) 2 e t o n ( t n i o p n i mp y tx a ms t i n u ) . t n o c ( r o t a r a p m o c i s s r v 1 l t u o w o l e g a t l o v t u p t u o l e v e l , t n e m e r u s a e m c d t n e r r u c k n i s t u p t u o a m 5 = d v0 0 . 00 3 . 05 4 . 0v c d r o t a r a p m o c a t a d t 3 d p y a l e d n o i t a g a p o r p ) h g i h o t w o l ( e m i t = t e s f f o c d : t u p n i v 1 c d , v 2 . 0 , z h m 2 p - p , y t u d ( e v a w e r a u q s t , % 0 5 = o i t a r r t , f < ) s n 0 1 e v5 50 1 1s n t 4 d p y a l e d n o i t a g a p o r p ) w o l o t h g i h ( e m i t e v5 50 1 1s n t 2 r e m i t e s i r = t e s f f o c d : t u p n i v 1 c d , v 2 . 0 , z h m 2 p - p , e v a w e n i s e v5 20 5s n t 2 f e m i t l l a fe v5 10 3s n d 2 r o i t a r y t u de v5 40 55 5% i 2 k n i s t n e r r u c k n i s t u p t u o , t n e m e r u s a e m c d n o i t a r u t a s t u p t u o v 3 . 0 = e g a t l o v 3 a5 . 30 . 5a m v 2 h t u o h g i h e g a t l o v t u p t u o l e v e l t n e m e r u s a e m c de v0 7 . 25 9 . 20 0 . 3v c d v 2 l t u o w o l e g a t l o v t u p t u o l e v e l , t n e m e r u s a e m c d t n e r r u c k n i s t u p t u o a m 5 = e v0 0 . 00 3 . 05 4 . 0v c d 2 r e i f i l p m a r e f f u b i s s r i t u o t n e r r u c t u p t u ot n e m e r u s a e m c d4 a0 0 2 ? z t u o e c n a d e p m i t u p t u ot n e m e r u s a e m c db v0 3 1 ?
january 2000 toko, inc. page 5 tk14551v 1pf a1 v cc v cc = 3 v v11 = 0.5 v 47 ? 0.01 ? 10 ? va 1000 pf vb a4 22 k sw7 sw8 sw9 sw10 v8 v9 = 1 v v10 = 0.9 v 3 k 2200 pf 2.2 k 3 k 1000 pf ~ sg2 0.01 ? 0.01 ? t1 2200 pf sw5 a2 vd cl1 10 pf 1 k cl2 10 pf 10 ? comp v c c = 3 v 0.01 ? a3 ve sw6 vc sw2 5.6 k v4 = 1 v v5 = 1 v sw3 sw4 100 pf 5.6 k 50 v3 = 0.9 v v1 = 0.2 v sw1 v2 = 2.0 v 2200 pf 2200 pf ~ 50 sg1 sg1 fm: 10.7 mhz 1 khz 100 k dev am: 40.0 mhz 2 mhz 80% mod 51 pg1 100 khz 100 mv p-p dc = 1.0 v t r , t f < 10 ns pg1 sg2 2 mhz 200mvp-p sine wave dc = 1.0 v 1 k v6 = 3v v7 = 3v note: cl1 and cl2 simulate probe capacitance and stray capacitance. vd and ve are measured with low capacitance fet probe (sony tektronix p6201). 50 10 k 0.01 ? fm if coil t1: 836bh-0268 (toko) 2.2 k 22 pf v cc a638an-1346etj (toko) 56 k 1000 pf 1 pf test circuit example of 40 mhz (= f in ) fm detection
page 6 january 2000 toko, inc. tk14551v test circuit (cont.) measurement of battery save function: battery save on: sw1 = 0.2 v position battery save off: sw1 = 2 v position measurement of comparator: sw3 is closed only for the measurement of the rssi comparator response characteristics and output sink current, supplying 1 v dc to pin 19. pg1 is connected only for the measurement of the rssi comparator response. input the pulse wave to pin 20, and measure the output wave (vd) of pin 16. i sink1 (rssi comparator output current): no if input. sw2 = v3 position (supplying 0.9 v to pin 20). sw3 = on (supplying 1 v to pin 19). sw5 = v6 position (supplying 3 v to pin16). measure the dc current to pin 16 from v6. i sink2 (data comparator output current): sw9 = v9 position(supplying 1 v pin 11). sw10 = v10 position (supplying 0.9 v to pin 12). sw6 = v7 position (supplying 3 v to pin 13). measure the dc current to pin 13 from v7. measurement of t r , t f , t pd (rssi comparator, data comparator): rssi comparator: no if input. sw2 = pg1 position. sw3 = on (supplying 1 v to pin 19). sw5 = vd position. measure the output wave (vd). data comparator: sw9 = 3 k ? position. sw10 = 3 k ? position. sw6 = ve position. measure the output wave (ve). t r , t f : measure the time between the 10% point and the 90% point of the output wave. t pd : measure the time between the 50% point of the input wave and the 50% point of the output wave. measurement of the logarithmic detection of rssi output: sw7 = off. sw8 = vb position. input am modulation signal sg1(f in = 40 mhz, fm = 2 mhz, mod. = 80%, v in = -60, -40, -15 dbm) to pin 24. measure the logarithmic detection output voltage of pin 10. the am demodulating output voltage deflection is standardizing the am demodulating output voltage in the case of -40 dbm input, and calculated by the deflection by am demodulating output voltage in the case of -60, -15 dbm input. the measurement of demodulating frequency band is standardizing the am demodulating output voltage of pin 10 in the case that v in = -40 dbm, f in = 40 mhz, fm = 100 khz and 80% am modulating output voltage at pin 10, comparing it to the standard output voltage. measurement of output current of rssi buffer amplifier 2: sw7 = off. sw8 = v8 position. no if input. sw4 = on (supplying 1 v to pin 18). measure the dc current (a4) between v8 and pin 10 in the case of v8 = 3 v, 0 v. measurement of output impedance of rssi buffer amplifier 2: no if input. sw8 = vb position. sw4 = on (supplying 1 v to pin 18). at first, sw7 = off and measure the dc current (vb1) of pin 10. next, sw7 = on and measure the dc current (vb8) of pin 10. the output impedance (z out ) is calculated by the following: z out ( ? ) = 10 k ?((vb1 - vb2)/(vb2 - 0.5))
january 2000 toko, inc. page 7 tk14551v n i p . o n l o b m y s l a n i m r e t e g a t l o v t i u c r i c t n e l a v i u q e l a n r e t n in o i t p i r c s e d 1 2 3 2 4 2 e l p u o c e d f i e l p u o c e d f i ) + ( t u p n i f i ) - ( t u p n i f i v 8 . 1 v 8 . 1 v 8 . 1 v 8 . 1 o t l a n i m r e t e h t : 2 , 1 n i p s s a p y b e h t t c e n n o c f i e h t f o r o t i c a p a c . r e i f i l p m a r e t i m i l r e t i m i l f i : 3 2 n i p g n i t r e v n i - n o n r e i f i l p m a . t u p n i r e t i m i l f i : 4 2 n i p . t u p n i g n i t r e v n i r e i f i l p m a 3t u p t u o f iv 0 . 2 r e i f i l p m a r e t i m i l f i . t u p t u o 4r o t a l u d o m e d f i t u p n i v 0 . 3 . t u p n i r o t c e t e d m f e h t r o f n o i t c e n n o c . t i u c r i c t f i h s e s a h p 5v f i c c v 0 . 3 l a n i m r e t y l p p u s r e w o p , r e i f i l p m a r e t i m i l f i f o 2 - r e i f i l p m a r e f f u b i s s r r o t c e t e d m f d n a 6d n gv 0l a n i m r e t d n g 7v c c v 0 . 3 l a n i m r e t y l p p u s r e w o p - r e i f i l p m a r e f f u b i s s r f o , r o t a r a p m o c i s s r , 1 r o t a r a p m o c a t a d d n a pin function description if v cc 1.5 k 1.5 k 50 k 50 k if v cc 1 k if v cc
page 8 january 2000 toko, inc. tk14551v pin function description (cont.) if v cc 1.4 v if v cc if v cc if v cc n i p . o n l o b m y s l a n i m r e t e g a t l o v t i u c r i c t n e l a v i u q e l a n r e t n in o i t p i r c s e d 8 9 m f r o t a l u d o m e d t u p n i p m a m f r o t a l u d o m e d t u p t u o p m a v 4 . 1 v 4 . 1 t s o p r o t c e t e d m f : 8 n i p . t u p n i r e i f i l p m a t s o p r o t c e t e d m f : 9 n i p . t u p t u o r e i f i l p m a 0 1d e r e f f u b i s s r 2 - t u p t u o 2 - r e i f i l p m a r e f f u b i s s r . t u p t u o 1 1 2 1 p m o c a t a d ) - ( t u p n i p m o c a t a d ) + ( t u p n i a t a d : 1 1 n i p g n i t r e v n i r o t a r a p m o c . t u p n i a t a d : 2 1 n i p r o t a r a p m o c . t u p n i g n i t r e v n i - n o n 3 1 4 1 p m o c a t a d t u p t u o d n g p m o c a t a dv 0 a t a d : 3 1 n i p . t u p t u o r o t a r a p m o c s i t i u c r i c t u p t u o e h t . r o t c e l l o c n e p o o t l a n i m r e t e h t : 4 1 n i p a t a d e h t e t a n i m r e t . t u p t u o r o t a r a p m o c
january 2000 toko, inc. page 9 tk14551v pin function description (cont.) n i p . o n l o b m y s l a n i m r e t e g a t l o v t i u c r i c t n e l a v i u q e l a n r e t n in o i t p i r c s e d 5 1 6 1 d n g p m o c i s s r p m o c i s s r t u p t u o v 0 o t l a n i m r e t e h t : 5 1 n i p i s s r e h t e t a n i m r e t . t u p t u o r o t a r a p m o c i s s r : 6 1 n i p . t u p t u o r o t a r a p m o c s i t i u c r i c t u p t u o e h t . r o t c e l l o c n e p o 7 1d e r e f f u b i s s r 1 - t u p t u o 1 - r e i f i l p m a r e f f u b i s s r . t u p t u o 8 1 9 1 2 - t u p t u o i s s r 1 - t u p t u o i s s r i s s r : 9 1 , 8 1 n i p . t u p t u o e r a s l a n i m r e t e s e h t , s t u p t u o t n e r r u c e g a t l o v a o t d e t r e v n o c e h t g n i t c e n n o c y b r o t s i s e r l a n r e t x e t u p t u o e h t n e e w t e b . d n g d n a s l a n i m r e t 0 2s a i b p m o c i s s r r o t a r a p m o c i s s r . t u p n i g n i t r e v n i - n o n e c n e r e f e r e h t y l p p u s . e g a t l o v if v cc if v cc if v cc v cc if v cc
page 10 january 2000 toko, inc. tk14551v pin function description (cont.) n i p . o n l o b m y s l a n i m r e t e g a t l o v t i u c r i c t n e l a v i u q e l a n r e t n in o i t p i r c s e d 1 2e v a s y r e t t a bv s b . l o r t n o c e v a s y r e t t a b : f f o e v a s y r e t t a b v s b v o t v 5 . 1 = c c : n o e v a s y r e t t a b v s b v 3 . 0 < 2 2d n g f iv 0l a n i m r e t d n g 100 k 100 k
january 2000 toko, inc. page 11 tk14551v typical performance characteristics t a = 25 c, unless otherwise specified. s+n, n, am out (dbv) 0 -100 -40 -80 -60 -20 fm demodulation s+n, n, thd, am out (f in = 10.7 mhz) if input level (dbm) -120 -100 -80 -60 -40 -20 0 20 20 0 12 4 8 16 v cc = 3 v f in = 10.7 mhz fm = 1 khz dev. = 100 khz thd (%) s+n am out (30% mod.) n thd s+n, n, am out (dbv) 0 -100 -40 -80 -60 -20 fm demodulation s+n, n, thd, am out (f in = 40 mhz) if input level (dbm) -120 -100 -80 -60 -40 -20 0 20 20 0 12 4 8 16 v cc = 3 v f in = 40 mhz fm = 1 khz dev. = 100 khz thd (%) s+n am out (30% mod.) n thd rssi buffer output 1 (v dc ) 2.0 rssi buffer output voltage vs. if input level (v cc characteristics) if input level (dbm) -120 -100 -80 -60 -40 -20 0 20 0.0 1.2 f in = 40 mhz 0.4 0.8 1.6 v cc 5.5 v 5.0 v 4.0 v 3.0 v rssi buffer output 1 (v dc ) 2.0 rssi buffer output voltage vs. if input level (frequency characteristics) if input level (dbm) -120 -100 -80 -60 -40 -20 0 20 0.0 1.2 v cc = 3 v 0.4 0.8 1.6 f in 40 mhz 70 mhz 90 mhz rssi buffer output 2 (mv p-p ) 1000 logarithmic detection am demodulation voltage vs. if input level if input level (dbm) -120 -100 -80 -60 -40 -20 0 20 10 100 500 300 30 v cc = 3 v f in = 40 mhz fm = 2 mhz mod = 80% 50 rssi buffer output 2 (mv p-p ) 1000 logarithmic detection am demodulation voltage vs. demodulating frequency modulating frequency fm (hz) 10k 30k 100k 300k 1m 3m 10m 10 100 500 300 30 50 v cc = 3 v f in = 40 mhz mod = 80%
page 12 january 2000 toko, inc. tk14551v typical performance characteristics (cont.) t a = 25 c, unless otherwise specified. if limiting amplifier gain vs. input frequency input frequency (mhz) if limiting amplifier gain (db) 100 0 60 20 40 80 1 3 5 10 30 50 100 v cc = 3 v i cc (ma) 20 supply current vs. supply voltage v cc (v dc ) 2 3 4 5 6 0 12 4 8 16 i cc (ma) 20 supply current vs. temperature temperature ( c) -40 -20 0 20 40 60 80 0 12 4 8 16 rssi buffer output 1 (v dc ) 2.0 rssi buffer output voltage vs. temperature temperature ( c) -40 -20 0 20 40 60 80 0.0 1.2 0.4 0.8 1.6 v cc = 3 v f in = 40 mhz 0 dbm input -30 dbm input -60 dbm input -90 dbm input rssi buffer output 1 (v dc ) 2.0 rssi buffer output voltage vs. if input level (temperature characteristics) if input level (dbm) -120 -100 -80 -60 -40 -20 0 20 0.0 1.2 v cc = 3 v f in = 40 mhz 0.4 0.8 1.6 temp. ( c) 85 50 25 0 -20 -40 am demodulating output voltage (mv p-p ) 400 0 100 200 300 logarithmic detection am demodulation voltage, am demodulation output vs. temperature temperature ( c) -40 -20 0 20 40 60 80 v cc = 3 v f in = 40 mhz fm = 2 mhz mod. = 80% v in = -40 dbm am demodulating output voltage am demodulating output voltage deflection 8 0 2 4 6 am demodulating output voltage deflection(db )
january 2000 toko, inc. page 13 tk14551v typical performance characteristics (cont.) t a = 25 c, unless otherwise specified. am demodulating output voltage (mv p-p ) 400 0 100 200 300 logarithmic detection am demodulation voltage, am demodulation output vs. supply voltage v cc (v dc ) 2 3 4 5 6 v cc = 3 v f in = 40 mhz fm = 2 mhz mod. = 80% v in = -40 dbm am demodulating output voltage am demodulating output voltage deflection 8 0 2 4 6 am demodulating output voltage deflection (db ) v out (mvrms) 200 0 40 120 160 80 fm demodulation demodulation output voltage, total harmonic distortion vs. temperature temperature ( c) -40 -20 0 20 40 60 80 v cc = 3 v f in = 10.7 mhz fm = 1 khz dev. = 100 khz thd (%) 5 0 1 3 4 2 v out thd s/n (db) 80 40 60 70 50 fm demodulation s/n, -3 db limiting sensitivity vs. temperature temperature ( c) -40 -20 0 20 40 60 80 v cc = 3 v f in = 10.7 mhz fm = 1 khz dev. = 100 khz -3 db limiting sensitivity (dbm) -40 -80 -70 -60 -50 s/n -3 db limit. sens. s/n (db) 80 40 60 70 50 fm demodulation s/n, -3 db limiting sensitivity vs. supply voltage v cc (v dc ) 2 3 4 5 6 v cc = 3 v f in = 10.7 mhz fm = 1 khz dev. = 100 khz -3 db limiting sensitivity (dbm) -40 -80 -70 -60 -50 s/n -3 db limit. sens. v out (mvrms) 200 0 40 120 160 80 fm demodulation demodulation output voltage, total harmonic distortion vs. supply voltage v cc (v dc ) 2 3 4 5 6 v cc = 3 v f in = 10.7 mhz fm = 1 khz dev. = 100 khz thd (%) 5 0 1 3 4 2 v out thd data comparator transient response (rise) 20 ns/div v cc = 3 v out (1v/div) in (0.1v/div)
page 14 january 2000 toko, inc. tk14551v typical performance characteristics (cont.) t a = 25 c, unless otherwise specified. data comparator transient response (fall) out (1v/div) 20 ns/div v cc = 3 v in (0.1v/div) data comparator output duty ratio vs. input voltage v in (mv p-p ) duty (%) 100 0 60 20 40 80 0 100 200 300 400 v cc = 3 v f in = 2 mhz v cc 836bh-0268 ( toko ) c 22 k rd 1 pf fm demodulation frequency characteristics v out (v dc ) 2.0 s curve characteristics if input frequency (mhz) 9.9 10.3 10.7 11.1 11.5 0.8 1.6 1.2 v cc = 3 v v in = -20 dbm rd = 1 k rd = 2.2 k v out (db) 2 demodulation output voltage vs. demodulting frequency rd = 2.2 k ? modulating frequency fm (hz) 1k 3k 10k 30k 100k 300k 1m -12 -6 0 -2 -10 -8 -4 0 db = 104.4 mvrms c = none c = 1000 pf v cc = 3 v f in = 10.7 mhz dev. = 100 khz c = 330 pf c = 47 pf c = 10 pf v out (db) 2 demodulation output voltage vs. demodulting frequency rd = 1.0 k ? modulating frequency fm (hz) 1k 3k 10k 30k 100k 300k 1m -12 -6 0 -2 -10 -8 -4 0 db = 30.7 mvrms c = none c = 1000 pf v cc = 3 v f in = 10.7 mhz dev. = 100 khz c = 330 pf c = 47 pf c = 10 pf
january 2000 toko, inc. page 15 tk14551v typical performance characteristics (cont.) t a = 25 c, unless otherwise specified. ask demodulation output wave, effect of inserting active filter condition: v cc = 3 v, fin = 40 mhz, fm = 2 mhz (sine wave), mod. = 80%, v in = -40 dbm without active filter with active filter (fc = 3 mhz) test circuit test circuit 0.2 s/div 0.2 s/div 1000 pf 3 k 3 k 10 pf 1 k comp v cc 1000 pf 3 k 2.2 k 10 pf 1 k comp v cc 15 pf 2.2 k 3 k 33 pf rssi buffer out 2 (0.1v/div) data comparator out (1v/div) rssi buffer out 2 (0.1v/div) data comparator out (1v/div)
page 16 january 2000 toko, inc. tk14551v typical performance characteristics (cont.) t a = 25 c, unless otherwise specified. rssi buffer output (pin 17) transient response (if input on/off) 5.6 k rssi buffered output-1 c condition v cc = 3 v f in = 40 mhz c = 100 pf rssi buffered output-1 (0.5v/div) 2 s/div 0 dbm input -30 dbm input -60 dbm input sg gate pulse (1v/div) c = 1000 pf c = 0.01 f 2 s/div 5 s/div 0 dbm input -30 dbm input -60 dbm input 5 s/div 50 s/div 50 s/div 0 dbm input -30 dbm input -60 dbm input rssi buffered output-1 (0.5v/div) rssi buffered output-1 (0.5v/div) sg gate pulse (1v/div) sg gate pulse (1v/div)
january 2000 toko, inc. page 17 tk14551v typical performance characteristics (cont.) t a = 25 c, unless otherwise specified. rssi buffer output-1 (pin 17) transient response (battery save on off) 5.6 k rssi buffered output-1 c condition v cc = 3 v f in = 40 mhz c = 100 pf c = 1000 pf c = 0.01 f rssi buffered output-1 (0.5v/div) battery save (1v/div) 2 s/div 0 dbm input -30 dbm input -60 dbm input 5 s/div 0 dbm input -30 dbm input -60 dbm input 50 s/div 0 dbm input -30 dbm input -60 dbm input rssi buffered output-1 (0.5v/div) battery save (1v/div) rssi buffered output-1 (0.5v/div) battery save (1v/div)
page 18 january 2000 toko, inc. tk14551v application notes if the input is fm or fsk modulation, whether the if input is a balanced or an unbalanced input, there is no problem. but, if the input is ask modulation and the if input is a balanced input, the bit error rate (ber) may be high. therefore, if the input is ask modulation, the if input must be an unbalanced input. if the input is an unbalanced input as shown below, do not terminate pin 1 (do not connect the bypass capacitor between pin 1 and gnd). if pin 23 is the input do not terminate pin 2. do not terminate 1.5 k 50 k 50 k 1.5 k ~ 50
january 2000 toko, inc. page 19 tk14551v circuit description if limiter amplifier: the if limiter amplifier is composed of four differential gain stages. the total gain of the if limiter amplifier is about 64 db. the output signal of the if limiter amplifier is provided at pin 3 through the emitter-follower output stage. the if limi ter amplifier output level is 0.5 v p-p . the operating current of the if limiter amplifier emitter-follower output is 550 a. if the capacitive load is heavy, the negative half cycle of the output waveform may be distorted. this distortion can be reduced by connecting an external resistor between pin 3 and gnd to increase the operating current. the increased operating current by using an external resistor is calculated as follows (see figure 1): the increased operating current i e (ma) = (v cc - 1.0)/r e (k ? ). because the if input is a balanced input, it is easy to match a saw filter, etc. if the if input is an unbalanced input, connect pin 23 or 24 with a bypass capacitor to ground. the input resistance of the if limiter amplifier is 1.5 k ? (see figure 2). if the impedance of the filter is lower than 1.5 k ? , connect an external resistor between pin 24 and pin 2 or between pin 23 and pin 1 in parallel to provide the equivalent load impedance of the filter. figure 2 shows an example of a filter with a 330 ? impedance. v cc i e 550 a if output r e figure 1 23, 24 1, 2 330 1.5 k figure 2
page 20 january 2000 toko, inc. tk14551v circuit description the input impedance of the if limiter amplifier (between pin 23, 24 and gnd) is as follows: y c n e u q e r f ) z h m ( 1 1 s z n i ] [ ) e c n a d e p m i s e i r e s ( | 1 1 s | ? ? 0 32 3 9 . 04 . 3 -1 0 7 j - 1 3 8 0 48 2 9 . 02 . 4 -7 6 6 j - 3 8 6 0 50 3 9 . 02 . 5 -2 7 6 j - 8 3 5 0 69 3 9 . 06 . 7 -3 1 6 j - 4 9 2 0 73 3 9 . 00 . 8 -4 7 5 j - 5 8 2 0 86 2 9 . 03 . 8 -7 3 5 j - 7 8 2 0 90 2 9 . 02 . 9 -0 9 4 j - 5 5 2 0 0 16 1 9 . 00 . 0 1 -0 5 4 j - 0 3 2 magnified + j250 + j100 + j50 + j25 + j10 0 - j10 - j25 - j50 - j100 - j250 10 25 50 100 250 s11 + j500 + j300 + j200 + j150 + j100 + j75 + j50 - j50 - j75 - j100 - j150 - j200 - j300 - j500 100 mhz 175 250 850 400 s11 30 mhz 0 ?
january 2000 toko, inc. page 21 tk14551v circuit description rssi, rssi buffer amplifier: because the rssi output of this product is a dual output, it has various uses. because it includes a dual high-speed rssi output, it is possible to sense the carrier level and to demodulate am at the same time. the rssi output is a current output. it converts to a voltage by an external resistor between pin 28,19 and gnd. the time constant of the rssi output is determined by the product of the external converting resistor and parallel capacitor. when the time constant is longer, the rssi output is more immune to disturbances or the component of amplitude modulation, but the rssi output response is lower. determine the external resistor and capacitor with this in mind. it is possible to modify the slope of the rssi curve characteristic by changing the external resistor. in this case, the maximum range of converted rssi output voltage is gnd level to about v cc - 0.2 v (the supply voltage minus the collector saturation voltage of the output transistor). in addition, it is possible to modify the temperature characteristic of the rssi output voltage by changing the temperature characteristic of the external resistor. normally, the temperature characteristic of the rssi output voltage is very stable when using a carbon resistor or metal film resistor with a temperature characteristic of 0 to 200 ppm/ c. this product is very accurate, because the rssi characteristic is trimmed individually. both systems of rssi output are connected to individual buffer amplifiers with an internal gain of 1. therefore, even if the load impedance is heavy, it is possible to take out the rssi output signal from the buffer amplifier output. the maximum input and output level of this buffer amplifier is v cc - 1.0 v. am demodulation by using the rssi output: although the distortion of the rssi output is high because it is a logarithmic detection of the envelope to the if input, am can be demodulated simply by using the rssi output. in this case, the input dynamic range that can demodulate am is the inside of the linear portion of the rssi curve characteristic (see figure 4). this method does not have a feedback loop to control the gain because an agc amplifier is not necessary (unlike the popularly used am demodulation method). therefore, it is a very useful application for some uses because it doesn t have the response time problem. v cc 18, 19 rssi- out current-to-voltage transformation resistor output current figure 3 - rssi output stage
page 22 january 2000 toko, inc. tk14551v circuit description rssi-out (v) rf input - level ( dbu ) am can be demodulated inside of linear range operating condition: v cc = 3 v, fin = 40 mhz, fm = 2 mhz, mod = 80%, v in = -40 dbm 50 mv/div 0.2 s/div figure 4 -am demodulated waveform if it is necessary to improve the distortion of the am demodulated waveform of logarithmic detection, connect a low pass filter to the rssi buffer amplifier output. figure 5 shows the am demodulated waveform with a low pass filter inserted. 3 k 2.2 k 10 pf 1 k comp v cc 15 pf 2.2 k 3 k 33 pf fc = 3 mhz c test circuit operating condition: v cc = 3 v, fin = 40 mhz, fm = 2 mhz, mod = 80%, v in = -40 dbm 50 mv/div 0.2 s/div figure 5 figure 4 shows the am demodulated waveform.
january 2000 toko, inc. page 23 tk14551v v cc v cc qb v cc qa multiplier core circuit figure 6 - detector internal equivalent circuit v cc v cc delay line v cc rz rz rz is the characteristic impedance lc resonance circuit ceramic discriminator delay line figure 7 - examples of phase shifters circuit description fm detector: the fm detector is included in the quadrature fm detector using a gilbert multiplier. it is suitable for high speed data communication because the demodulation bandwidth is over 1 mhz. the phase shifter is connected between pin 3 (if limiter output) and pin 4 (input detector). any available phase shifter can be used: a lc resonance circuit, a ceramic discriminator, a delay line, etc. figure 6 shows the internal equivalent circuit of the detector. the signal from the phase shifter is applied to the multiplier (in the dotted line) through emitter-follower stage qa. when the phase shifter is connected between pin 3 and pin 4, note that the bias voltage to pin 4 should be provided from an external source because pin 4 is only connected to the base of qa. because the base of qb (at the opposite side) is connected with the supply voltage, pin 4 has to be biased with the equivalent voltage. using an lc resonance circuit is not a problem (see figure 7). however, when using a ceramic discriminator, it is necessary to pay attention to bias. if there is a difference of the base voltages, the dc voltages of the multiplier do not balance. it alters the dc zero point or worsens the distortion of demodulation output. the pin 4 input level should be saturated at the multiplier; if this level is lower, it is easy to disperse the modulation outp ut. therefore, to have stable operation, pin 4 should be higher than 100 mv p-p . the following figures show examples of the phase shifter.
page 24 january 2000 toko, inc. tk14551v circuit description establishing demodulation characteristics: generally, demodulation characteristics of fm detectors are determined by the external phase shifter. however, this product has a unique function which can optionally establish the demodulation characteristics by the time constant of the circuit parts after demodulation. the following explains this concept. figure 8 shows the internal equivalent circuit of the detector output stage. the multiplier output current of the detector is converted to a voltage by the internal op amp. the characteristic of this stage is determined by converting the current to voltage with resistor r 0 and the capacitor c 0 connected between pin 8 and pin 9 (see figure 8). in other words, the slope of the s-curve characteristic can be established optionally with resistor r 0 without changing the constant of the phase shifter. the demodulated bandwidth can be established optionally by the time constant of this external resistor r 0 and capacitor c 0 inside of a bandwidth of the if-filter and phase shifter. figure 9 shows an example of this characteristic. figure 8 - internal equivalent circuit of detector output stage r 0 c 0 demodulated output current demodulated output voltage v out v ref i to v convertor io figure 9 - example: band width of demodulation vs. time constant characteristic v out (db) 2 modulating frequency fm (hz) 1k 3k 10k 30k 100k 300k 1m -12 -6 0 -2 -10 -8 -4 0 db = 30.7 mvrms c = none c = 1000 pf v cc = 3 v fin = 10.7 mhz dev. = 100 khz c = 330 pf c = 47 pf c = 10 pf operating condition: measured by the standard test circuit. parallel resistor to phase shift coil = 1 k ? . f in = 10.7 mhz, modulation = 100 khz. external capacitance c 0 = 0 ~ 1000 pf. the -3 db frequency fc is calculated by the following: the s-curve output voltage is calculated by the following as centering around the internal reference voltage v ref : v out = v ref io x r 0 where v ref = 1.4 v, maximum of current io = 100 a fc = 1 2 c 0 r 0
january 2000 toko, inc. page 25 tk14551v circuit description center voltage of detector dc output: the center voltage of the detector dc output is determined by the internal reference voltage source. it is impossible to change this internal reference voltage source, but it is possible to change the center voltage by the following method. as illustrated in figure 10, the demodulated output current at pin 8 is converted to the voltage by an external resistor r1, without using the internal op amp. figure 11 shows an example of a simple circuit that divides the supply voltage into halves using resistors. since both circuits have a high output impedance, an external buffer amplifier should be connected. demodulated output current demodulated output voltage v out v ref i to v convertor io vb r1 c1 figure 10 - example of using external reference source demodulated output voltage v out r1 c1 r2 v cc demodulated output voltage v out = vb r1 x io demodulated bandwidth 1/gm is approximately 50 k ? which is the output resistance of the multiplier. pin 9 is disconnected. fc = demodulated output voltage v out = v cc / 2 r1 x io demodulated bandwidth 1/gm is approximately 50 k ? , which is the output resistance of the multiplier. pin 9 is disconnected. fc = 1 2 c1(1/gm) 1 2 c1(1/gm) figure 11 - example of dividing supply voltage into halves by resistors
page 26 january 2000 toko, inc. tk14551v circuit description rssi comparator, data comparator: the tk14551v contains a general purpose high speed data comparator and rssi comparator for the base band processing. because the input stage is composed of pnp transistors, it is possible to operate from a minimum voltage of 0.1 v to the supply voltage - 1.0 v (see figure 12). moreover, since the hfe of this pnp transistor is over 100, the bias current is below 0.01 a (this is below the value of the competitors products which typically use a lateral pnp transistor at the input stage). figure 13 shows the internal equivalent circuit of the comparator output stage. because the comparator output is an open collector, it is suitable for many interface levels. this open collector output is connected with an electrostatic discharge protection diode at the gnd side only; it is not connected with it at the power supply side in consideration of operating the voltage over the supply voltage of this ic. when the collector pull-up resistor value is low, high operating currents result. to prevent interference to the other circuitry, the emitters of the output transistors are brought out independently at pins 14 and 15. pins 14 and 15 are not connected with the substrate and other gnds internal to the ic. therefore, when operating these comparators, these terminals must be connected to gnd. when these comparators are operating at high speed, the etch pattern of pins 13, 14, 15, and 16 (comparator output stages) should not be run close to the etch pattern of pins 23 and 24 (if inputs). the switching waveforms of the comparator outputs may have an effect on the if inputs and may add noise to the zero crossing of the demodulated waveform, resulting in cross over distortion. because the negative input of the rssi comparator is connected to the rssi buffer amplifier output-1 internally, it is used for carrier sensing. the data comparator is used for the data shaper. input stage figure 12 - comparator input stage v cc 14, 15 13, 16 v cc comparator output stage figure 13 - comparator output stage
january 2000 toko, inc. page 27 tk14551v circuit description battery save function: pin 21 is the control terminal for the battery save function. the on/off operation of the whole ic can be switched by controlling the dc voltage at this terminal. figure 14 shows the internal equivalent circuit of pin 21. because it switches the bias circuit of the whole ic using the transistor in standby mode, it reduces the supply current to near zero. as the input terminal is connected with an electrostatic discharge protection diode at gnd side only, it is possible to control the voltage above the supply voltage. it is possible to go into standby mode by disconnecting pin 21, but it is not recommended because pin 21 is a high impedance and may malfunction from an external disturbance. when pin 21 is disconnected, a suitable capacitor should be connected between pin 21 and gnd. figure 14 - battery save application of ask(amplitude shift keying) demodulation: figure 15 shows an example application of ask demodulation. if the application circuit is like figure 15, the transient response time is long because of the time constant of the rectifier (pin 12) of the data comparator input. on the other hand, if the circuit construction between the rssi buffer amplifier output-2 (pin 10) and the data comparator input is figure 16, the transient response time is shortened. since the demodulation is a logarithmic detection using the rssi output, the demodulated wave of the rssi buffer amplifier output-2 is distorted making the duty ratio of the data comparator output worse. the output duty ratio may be improved by adding the offset dc voltage (vs) to the dc voltage of pin 11 of the data comparator input. vs is established at a few tens of mv. but, as the demodulation level of the rssi buffer amplifier output-2 is changed by the dispersion, it is best to control vs by a variable resistor, etc. it is possible t o substitute the variable resistor for vs. v cc 21 50 k bias vs
page 28 january 2000 toko, inc. tk14551v v cc = 3 v 47 f 0.01 f 10 f 2200 pf 0.01 f 0.01 f 2200 pf 1 k 5.6 k 100 pf 5.6 k b.s. = 1.5 v 2200 pf 2200 pf ~ 50 sg1 51 0.01 f 3 k 3 k 330 pf 1 k 0.01 f 10 f comp v c c = 3 v if amp bias rssi v cc v cc figure 15 figure 16 circuit description v cc = 3 v 47 f 0.01 f 10 f 2200 pf 0.01 f 0.01 f 2200 pf 1 k 5.6 k 100 pf 5.6 k b.s. = 1.5 v 2200 pf 2200 pf ~ 50 sg1 51 0.01 f 1 k 0.01 f 10 f comp v c c = 3 v if amp bias rssi v cc v cc 100 k v cc 100 k v cc vs 100 pf
january 2000 toko, inc. page 29 tk14551v test board c1= 2200 pf, c2 = 10 f, c3 = 0.01 f, c4 = 1 pf, c5 = 1000 pf, c6 = 100 pf r1 = 50 ? , r2 = 2.2 k ? , r3 = 22 k ? , r4 = 1 k ? , r5 = 5.6 k ? l1 = 10 h, l2 = 836bh-0268 (toko) l1
page 30 january 2000 toko, inc. tk14551v notes
january 2000 toko, inc. page 31 tk14551v notes
page 32 january 2000 toko, inc. tk14551v marking information tk14551v 14551 tssop-24 package outline printed in the usa ? 1999 toko, inc. all rights reserved toko america regional offices toko america, inc. headquarters 1250 feehanville drive, mount prospect, illinois 60056 tel: (847) 297-0070 fax: (847) 699-7864 ic-119-tk119xx 0798o0.0k visit our internet site at http://www.tokoam.com the information furnished by toko, inc. is believed to be accurate and reliable. however, toko reserves the right to make chan ges or improvements in the design, specification or manufacture of its products without further notice. toko does not assume any liability arising from the application or use of any product or circu it described herein, nor for any infringements of patents or other rights of third parties which may result from the use of its products. no license is granted by implication or otherwise under any paten t or patent rights of toko, inc. western regional office toko america, inc. 2480 north first street , suite 260 san jose, ca 95131 tel: (408) 432-8281 fax: (408) 943-9790 midwest regional office toko america, inc. 1250 feehanville drive mount prospect, il 60056 tel: (847) 297-0070 fax: (847) 699-7864 eastern regional office toko america, inc. 107 mill plain road danbury, ct 06811 tel: (203) 748-6871 fax: (203) 797-1223 semiconductor technical support toko design center 4755 forge road colorado springs, co 80907 tel: (719) 528-2200 fax: (719) 528-2375 aaaaa yyy e lot. no. marking 4.4 0.3 + 7.8 0.25 0.65 0 ~ 0.15 1.2 max 0.9 +0.15 -0.15 6.4 0.15 +0.15 -0.15 0.50 0 ~ 10 recommended mount pad 0.65 4.8 1.0 0.35 0.1 0.12 m e dimensions are shown in millimeters tolerance: x.x = 0.2 mm (unless otherwise specified) 24 13 112


▲Up To Search▲   

 
Price & Availability of TK14551V14551

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X